Blockchain and Machine Learning for Communications and Networking Systems

Recently, with the rapid development of information and communication technologies, the infrastructures, resources, end devices, and applications in communications and networking systems are becoming much more complex and heterogeneous. In addition, the large volume of data and massive end devices may bring serious security, privacy, services provisioning, and network management challenges. In order to achieve decentralized, secure, intelligent, and efficient network operation and management, the joint consideration of blockchain and machine learning (ML) may bring significant benefits and have attracted great interests from both academia and industry. On one hand, blockchain can significantly facilitate training data and ML model sharing, decentralized intelligence, security, privacy, and trusted decision-making of ML. On the other hand, ML will have significant impacts on the development of blockchain in communications and networking systems, including energy and resource efficiency, scalability, security, privacy, and intelligent smart contracts. However, some essential open issues and challenges that remain to be addressed before the widespread deployment of the integration of blockchain and ML, including resource management, data processing, scalable operation, and security issues. In this paper, we present a survey on the existing works for blockchain and ML technologies. We identify several important aspects of integrating blockchain and ML, including overview, benefits, and applications. Then we discuss some open issues, challenges, and broader perspectives that need to be addressed to jointly consider blockchain and ML for communications and networking systems.

Monday, February 24, 2020